Bayes Estimation of Common Parameters in Interlaboratory Studies

Andrew L. Rukhin
Department of Mathematics and Statistics
University of Maryland, Baltimore County
Baltimore, MD, 21228-5398
Mark G. Vangel
Statistical Engineering Division
National Institute of
Standards and Technology
Building 820, Room 353
Gaithersburg, MD 20899-0001

JSM, Baltimore August 12, 1999

Several materials measured by multiple laboratories — *two-way mixed model*

- Bayesian Model
- Likelihood Analysis
- Extension of Mandel-Paule Method
- Example

The Problem

- Each of p laboratories makes repeated measurements of m materials.
- The number of measurements made can differ among the laboratories, but each material is measured the same number of times by each laboratory.
- The within-laboratory variances can differ.
- The selected laboratories can be regarded as a random sample from an infinite population of laboratories.

How should one estimate 'consensus' values for the quantities measured, and what are the uncertainty in this estimates?

Example: Dietary Fiber Li and Cardozo (1994)

J. Of AOAC Int., 77, p. 689

Nine labs each measures fiber in six foods, in blind duplicates.

Sample	Laboratory				
	1	2		9	
Apples	12.44	12.87		12.08	
	12.48	13.20		12.38	
Apricots	25.05	27.16		25.31	
	25.58	26.29		25.43	
:	<u>:</u>	:	• • •	:	
FIBRIM	74.07	76.55		73.96	
	75.01	78.36		74.24	

Hierarchical Model With Noninformative Priors: Two-Way Model

$$i = 1, \dots, p$$
 indexes laboratories

$$j = 1, \ldots, n_i$$
 indexes measurements

$$k = 1, \dots, m$$
 indexes materials

$$x_{ijk} = \theta_k + \epsilon_i + e_{ijk}$$

independent $\epsilon_i \sim N(0, \sigma^2)$, $e_{ijk} \sim N(0, \sigma_i^2)$.

$$p(x_{ijk}|\delta_i, \theta_k, \sigma_i^2) = N(\delta_i + \theta_k, \sigma_i^2),$$

$$p(\sigma_i) \propto 1/\sigma_i$$

$$p(\delta_i|\mu,\sigma^2) = N(\mu,\sigma^2),$$

$$p(\theta_k) = 1,$$

can handle

$$p(\sigma_i) \propto \sigma_i^{\kappa_i}$$

Posterior of $(\{\theta_k\}, \sigma)$

Let T_{ν} and Z denote independent Student-t and standard normal random variables, and assume that $\psi \geq 0$ and $\nu > 0$. Then

$$U = T_{\nu} + Z\sqrt{\frac{\psi}{2}}$$

has generalized t-distribution with the density

$$f_{
u}\left(u;\psi\right)$$

$$= \frac{1}{\Gamma(\nu/2)\sqrt{\pi}} \int_0^\infty \frac{y^{(\nu+1)/2 - 1} e^{-y\left[1 + \frac{u^2}{\psi y + \nu}\right]}}{\sqrt{\psi y + \nu}} dy.$$

The posterior of $(\{\theta_k\}, \sigma)$ is

$$p(\lbrace \theta_k \rbrace, \sigma | \lbrace x_{ijk} \rbrace) \propto p(\sigma) \prod_{i=1}^{p} \frac{1}{t_i} f_{\nu_i} \left(\frac{\overline{x}_{i \cdot k} - \mu}{t_i}; \frac{2\sigma^2}{t_i^2} \right),$$

$$\nu_i = n_i - 1$$

$$t_i^2 = \frac{1}{\nu_i n_i m} \left[\sum_{j,k} (x_{ijk} - \bar{x}_{i\cdot k})^2 + n_i \sum_{k} (\bar{x}_{i\cdot k} - \bar{x}_{i\cdot k})^2 + n_i \sum_{k} (\bar{\theta} - \theta_k)^2 \right]$$

Given $\sigma = 0$, the posterior distribution of the consensus means θ_k is proportional to a product of scaled t-densities:

$$p(\theta_k|\{x_{ijk}\}, \sigma=0) \propto \prod_{i=1}^p \frac{1}{t_i} T'_{n_i-1} \left(\frac{\bar{x}_{i\cdot k} - \mu}{t_i}\right).$$

These densities reflect uncertainties in θ_k .

In the general case the posterior is proportional to the *product* of the appropriate generalized (symmetric) t-densities, centered at each lab average \bar{x}_i .

Matrix Formulation

A matrix formulation of the model: the ith laboratory repeats its vector measurements n_i times, the m-dimensional data $\{x_{ij}\}$ for $i=1,\ldots,p$ and $j=1,\ldots,n_i$ follow a two-way MANOVA model, which may be both unbalanced and heteroscedastic

$$x_{ij} = \theta + \epsilon_i + e_{ij}$$

independent $\epsilon_i \sim N_m(0, \sigma^2 e^T e)$, $e_{ij} \sim N_m(0, \Sigma_i)$, $j = 1, \ldots, n_i$.

Here ${\bf e^Te}$ is a covariance matrix (of rank one), and σ^2 is the unknown variance; θ represents unknown m-dimensional common to all laboratories mean; Σ_i^2 and σ^2 are the nuisance parameters.

A more general model,

$$x_{ij} = B_i[\theta + \epsilon_i] + e_{ij},$$

independent $\epsilon_i \sim N_m(0, \sigma^2 \Xi) e_{ij} \sim N_{m_i}(0, \Sigma_i)$.

The design matrices B_i have sizes $m_i \times m$, the known $m \times m$ matrix Ξ may have rank smaller than m, and θ represents unknown m-dimensional structural parameter common to all laboratories.

The covariance matrices Σ_i of size $m_i \times m_i$ and the unknown variance σ^2 are the nuisance parameters.

This model allows for the situation when some of the laboratories do not perform measurements on all components of θ , but rank $(B_i) \equiv m$.

For simplification in this talk $B_i \equiv \mathbf{I}$.

The statistics $x_i = \sum_{j=1}^{n_i} x_{ij}/n_i$, $S_i = \sum_{j=1}^{n_i} (x_{ij} - x_i)^T (x_{ij} - x_i)/\nu_i$ are sufficient.

The generalized m-dimensional t-distribution with density $f_{\nu}\left(u;\Psi\right)$ is that of the sum

$$U = V_{\nu} + Z$$

where independent $Z \sim N_m(0,\Psi)$ and V has the density proportional to

$$\left[1 + v^T \times v\right]^{-(m+\nu)/2}$$

The posterior of (θ, σ) is

$$p(\theta, \sigma | \{x_{ij}\})$$

$$\propto p(\sigma) \prod_{i=1}^{p} \frac{1}{|T_i|} f_{\nu_i} \left(T_i^{-1} (x_i - \theta); 2\sigma^2 T_i^{-2} \Xi \right).$$

The same interpretation.

Likelihood Analysis

Put

$$\omega_i = \left[\frac{1}{n_i} \Sigma_i + \sigma^2 \Xi\right]^{-1}.$$

The loglikelihood function can be written in the form

$$-2\ell = \sum_{i} (x_i - \theta)^T \omega_i (x_i - \theta) - \sum_{i} \log |\omega_i|$$

$$+\sum_{i=1}^{p} \nu_{i} \log |\Sigma_{i}| + \sum_{i=1}^{p} \nu_{i} \text{tr}(\Sigma_{i}^{-1} S_{i}) + C.$$

Local extreme points are possible. Cochran (1937), (1954), (1980). Vangel and Rukhin (1999)

The MLE of θ has the form

$$\widehat{\theta} = \left[\sum_{i=1}^{p} \omega_i\right]^{-1} \sum_{i=1}^{p} \omega_i x_i.$$

When Σ_i and σ are given, $\widehat{\theta}$ gives the optimal estimator of θ in the sense that it minimizes the sum of the mean squared errors

$$E(\tilde{x}-\theta)(\tilde{x}-\theta)^T$$

within the class of unbiased "linear estimators" \tilde{x} of θ , $\tilde{x} = \sum_i A_i x_i$ with some matrices A_i . Thus it generalizes the classical weighted means statistics used when m=1.

Extension of Mandel-Paule Method

Even without the normality assumption (only under existence of second moments) one has for $\widehat{\theta}$

$$E(x_i - \widehat{\theta})(x_i - \widehat{\theta})^T = \omega_i^{-1} - \left[\sum_{k=1}^p \omega_k\right]^{-1}.$$

$$E(x_i - \widehat{\theta})^T \omega_i (x_i - \widehat{\theta})$$
 is a scalar,

$$\sum_{i=1}^{p} E(x_i - \widehat{\theta})^T \omega_i (x_i - \widehat{\theta})$$

$$= \sum_{i=1}^{p} \operatorname{tr} \left(E(x_i - \widehat{\theta}) (x_i - \widehat{\theta})^T \omega_i \right)$$

$$= \sum_{i=1}^{p} \operatorname{tr} \left(\mathbf{I}_m - \left[\sum_{k=1}^{p} \omega_k \right]^{-1} \omega_i \right)$$

$$= mp - m = m(p - 1).$$

This identity can be used as the estimating equation for θ and σ^2 , provided that Σ_i are estimated by S_i .

This method consists in restricting the class of estimators of ω_i to those of the form $[n_i^{-1}S_i+y\Xi]^{-1}$ for some positive y. With the "weights"

$$w_i = w_i(y) = [n_i^{-1}S_i + y\Xi]^{-1},$$

an estimator of θ from this class has the representation

$$\hat{x} = \hat{x}(y) = \left[\sum_{i=1}^{p} w_i\right]^{-1} \sum_{i=1}^{p} w_i x_i.$$

The suggestion is to select the estimator out of this class, i.e. to choose y, which is designed to estimate σ^2 , as the solution of the equation

$$\sum_{i=1}^{p} (x_i - \hat{x})^T w_i(y) (x_i - \hat{x}) = m(p-1).$$
 (1)

A direct analogue of the Mandel-Paule algorithm widely used at NIST in the case m=1. This is an easily implementable method suggested by Mandel and Paule (1970), Paule and Mandel (1982). It is known often to provide reasonable estimates. Schiller and Eberhardt (1992)- a discussion of this method as used in the preparation of standard reference materials.

This extension of the Mandel-Paule rule provides the estimate \hat{x} of the common parameter θ along with the estimate y of σ^2 .

Properties:

- the Mandel-Paule rule is well defined, i.e.
 (1) has at most one positive solution;
- The left-hand side of (1) is a monotonically decreasing convex function.

Interpretation: an "approximate" version of the maximum likelihood estimator (or rather of the restricted maximum likelihood estimator)

$$\sum_{i=1}^{p} (x_i - \hat{x})^T w_i(y) (x_i - \hat{x}) = mp$$

This can be obtained from reparametrization of likelihood equation by estimating Σ_i by S_i ,

which leads to the maximum likelihood estimate of σ^2 of the form

$$\hat{\sigma}^2 \sim$$

$$y \frac{\sum_{i=1}^{p} (x_i - \widehat{\theta})^T (n_i^{-1} S_i + y \Xi)^{-1} (x_i - \widehat{\theta}) + n - mp}{n}.$$

Thus the Mandel-Paule rule is characterized by the following fact:

$$\hat{\sigma}^2 \sim y$$
.

Rukhin and Vangel (1998)

To obtain a confidence set for θ assume that p is large. Under some conditions \hat{x} has approximately m-dimensional normal distribution with mean θ and the covariance matrix which can be estimated by

$$\Upsilon = \frac{1}{p} \left[\sum_{i=1}^{p} w_i \right]^{-1}$$

$$\left[\sum_{i=1}^p w_i(x_i-\widehat{x})(x_i-\widehat{x})^T w_i\right] \left[\sum_{i=1}^p w_i\right]^{-1}.$$

Provided Υ is nonsingular, one obtains an approximate $(1 - \alpha)$ -confidence ellipsoid for θ ,

$$\left\{\theta: (\hat{x}-\theta)^T \Upsilon^{-1}(\hat{x}-\theta) \leq \chi_{\alpha}^2(m)\right\},$$

 $\chi^2_{\alpha}(m)$ - α -critical point for the χ^2- distribution with m degrees of freedom.

The method extends to the situation when $\sum_i \omega_i$ may be non-invertible, as with $\left[\sum_{i=1}^p \omega_i\right]^-$ denoting the Moore-Penrose pseudoinverse,

$$\widehat{\theta} = \left[\sum_{i=1}^{p} \omega_i\right]^{-} \sum_{i=1}^{p} \omega_i x_i,$$

and

$$E(x_i - \widehat{\theta})(x_i - \widehat{\theta})^T = \omega_i^- - \left[\sum_{k=1}^p \omega_k\right]^-.$$

Then the equation (1) is to be re[placed by

$$\sum_{i=1}^{p} (x_i - \hat{x})^T w_i(y) (x_i - \hat{x}) = mp - q$$

with $q = \operatorname{rank}\left(\sum_{k=1}^{p} \omega_k\right)$.

Dietary Fiber in Apricots

Lab.	x_i	s_i^2	n_i
1	25.32	0.37	2
2	26.72	0.62	2
3	27.89	0.35	2
4	27.70	1.85	2
5	27.42	0.61	2
6	24.30	0.21	2
7	27.11	0.37	2
8	27.28	0.09	2
9	25.37	0.08	2

Mean: $\bar{x} = 26.567$

Weighted Means:

MP = 26.472

ANOVA = 26.420

MLE = 27.275